几种常用的图像对比度调整方法

本文介绍了图像处理中的几种对比度调整方法,包括直方图均衡、色阶调整、对比度增强、Retinex去雾算法以及形态学调整。这些技术用于改善图像质量,适用于图像偏暗、偏亮或对比度不足的情况。直方图均衡通过拉伸图像分布提高对比度,色阶调整则通过拉伸亮度范围实现。对比度调整利用线性运算增强图像的明暗对比。Retinex算法则考虑了光线反射,适用于不同类型的图像增强。形态学调整利用开闭操作减少光照不均影响。
摘要由CSDN通过智能技术生成

在工业图像中,不同时间段拍摄的图像质量层次不齐,需要按需选择合适的调整方式,本文列出了几种基本的方法:
1.直方图均衡
  图像直方图存在峰值时,如暗峰值,亮峰值,中间峰值,通过直方图均衡,可以将图像调整为高对比度的效果。该算法比较成熟,在matlab中只需要一句话就可以实现。
  eqimg =histeq(img);
  OpenCV原型:void equalizeHist( InputArray src, OutputArray dst );

2.色阶调整
  也是一种亮度均衡,将最小,最大区间的图像拉伸到一个线性的范围。
  公式:dst(i,j)=(src(i,j)-min)/(max-min)*255;
  算法对min,max的取值需要自己调节。
  matlab也只需要一句就可以实现:
  min=10;
  max=250;
  dst=(src-min)/(max-min)*255;
  dst=uint8(dst);
  这种方法适合图像整体偏暗或者偏亮的情况。

3.对比度调整
  采用线性的方法实现对图像中暗区域更暗,亮区域增强的效果。公式:dst(i,j)=alpha*(src(i,j)-mean)+beta;
  mean的取值可以是图像全局也可以是局部,根据需要调整。具体的实现代码:
    clc;
    close all;
    clear all;
    img=imread('J.bmp');  
    h=fspecial('average',[50,50]);%3*3均值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值